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'True' Self-Avoiding Walks with 
Generalized Bond Repulsion on Z 
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We consider a nearest-neighbor random walk on 7], for which the probability of 
jumping along a bond of the lattice is proportional to exp[ - g. (number of pre- 
vious jumps along that bond}~], with g > 0, h-E (0, 1]. After a review of earlier 
results obtained for the case r = l we outline the generalizations for x �9 (0, I), 
obtaining a whole range of anomalous diffusion limits, 
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1. I N T R O D U C T I O N  

We cons ider  ' t rue '  self-avoiding r a n d o m  walks  ( T S A W )  on  7/, with 
general ized b o n d  repuls ion.  X~ is a r a n d o m  walk  on  the one -d im ens iona l  
integer  lattice s ta r t ing  f rom the or igin  an d  at t ime i +  1 it j u m p s  to one  of  
the two ne ighbo r ing  sites of  Xi, so tha t  the p robab i l i ty  of  j u m p i n g  a long  
a b o n d  of  the latt ice is p r o p o r t i o n a l  to 

e x p [ - g .  ( n u m b e r  of  previous  j u m p s  a long  that  b o n d )  "]  

where  g is a posi t ive coup l ing  c o n s t a n t  a n d  x e (0, 1 ]. More  formal ly :  for 
a neares t  ne ighbo r  walk  _x oi = (Xo, xl  ..... x;) a n d  a latt ice site y e 7/ deno te  
by v ( y [ M  o) the n u m b e r  of j u m p s  a long  the b o n d  ( y - 1 ,  y )  per formed by  
the walk  x~: 

v( ' - { O ~ j < i :  Y J g o ) -  # {xj ,  x j+,}  = { y -  1, y}} ( l . l )  
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(Note that both left and 
the law 

P(Xi+ 1 = x i  

= 

exp{ 

The case K = 1 is usually 
repulsion. The difference 
site repulsion studied by 
spent on edges, while in 

right jumps are counted.) The walk is governed by 

___ i 

exp{ - g v ' - ( x i  + ( 1 _ 1 )/21 _x~)} (1.2) 
- g v ~ ( x , +  1 I_x~)} +exp{ - g v " ( x  il _Xo)}i 

referred to as 'true' self-avoiding walk with bond 
from the 'orthodox'  true self-avoiding walk with 
Amit e t  al.  ~ )  is that here we count the local time 
case of site repulsion the jump probabilities are 

determined by the local time spent on sites. We expect that the physical 
phenomena, such as recurrence or (anomalous) diffusion rate, should be 
similar in the two cases. Based on a renormalization group analysis Amit 
e t  al.  argued that the upper critical dimension of TSAW is d,. = 2. That is: 
in more than two dimensions the TSAW behaves diffusively, like an 
ordinary random walk, with logarithmic corrections in two dimensions. 
Computer simulations of the same authors seem to agree with this conjec- 
ture. It is natural to expect superdiffusive behaviour below the critical 
dimension, i.e., in d = l .  Some years later, Peliti and Pietronero (~~ 
considered the one-dimensional problem, too, and based on nonrigorous 
scaling arguments they concluded that the variance of the TSAW should be 
~ t 4/3 for long times. For a review of the problem see also refs. 7 and 9. In 
ref. 12 we considered the x = 1 case and gave a rigorous version of this last 
assertion, proving limit theorems for the distributions of various func- 
tionals of the TSAW. Our main motivation for considering the generaliza- 
tion to K e (0, 1) is to 'interpolate' between the t ~/2 scaling of the ordinary 
random walk and the anomalous t 2/3 scaling of the TSAW found in ref. 12. 

The outline of the paper is the following: in Section 2 we review, 
without proofs, our earlier results regarding the K= I case. This section 
contains also the definitions and notations used in the sequel. In Section 3 
we formulate results and conjectures regarding the cases x E (0, 1 ), which 
parallel those presented in Section 2. (As a consequence Sections 2 and 3 
have a similar structure.) Finally, in Section 4 we sketch the main ideas of 
the proofs of the results formulated in Section 3, with emphasis on those 
points which differ from the proofs in refs. 12. We do not repeat the techni- 
cal parts from the proofs in those papers. 

2. K =  1: R E V I E W  OF EARLIER RESULTS 

In the present section we first review the results proved in ref. 12 
concerning the local time process, hitting times, and the scaling limit of the 
TSAW with bond repulsion on 7/. 
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Let I W,.[, Y s ( -  oo, oo), be a (two-sided) reflected Brownian motion 
with an arbitrary starting point I Wol = h e [0, oo). For  x e [0, oo) define 

�9 , + i n f { y > x : l W , , I  0} (2.1) c o . ~ = s u p { y < x  I W d - - 0 }  ~.,. = = 

and 

I[ ~'+ 
T~ = I W,] dy (2.2) 

4 

That  is, ag.~-, respectively o9{, is the starting, respectively ending, point of 
the excursion stradling x e  [0, oo), and T,. is the area under I W,.I between 

+ co o and 09.,.. 

2.1. The Local Time Process and Hitting Times 

Our first result was a limit theorem for the local time process of 
the TSAW Xi, stopped at appropriately defined stopping times. Let 
k e 7 / c ~ ( O ,  oo) and m ~ N .  Denote  by "r(L) and T tr~ the times of the ~ k , m  k , m  
(m + 1 )th arrival at the lattice site k from k - 1, respectively k + 1 : 

T ~L'R~ = 0  (2.3) k , - - I  

T(L .m = m i n { i > T  t/-'m'X~ =k-T-1, X~=k} (2.4) k , m +  1 ~ k , m  -- I 

The bond local time process of the TSAW stopped at T k .... �9 = L or R, is 

1") __ T ('1 
S k . , , , ( l ) - - v ( k - - l l _ Xo k . , , )  , 1~7/ (2.5) 

Let 

(.Ok,n ,l-j+ = min{l>_- k" ~ (1) = 0} (2.6) 

I.~ 0} (2.7) t ' ) -  =max{l~<0"  S k . , , ( l ) =  O~ k.  m 

( . ) -  
In plain words: k--Ogk.,,~'~+ and k--Ogk. , ,  --1 are the leftmost, respectively 
rightmost, sites visited by the stopped walk _Xff~Y -,. The following theorem 
describes the precise asymptotics of the process  S, properly scaled: 

Theorem 1. L e t x e [ 0 ,  o o ) , h > 0 ,  a n d * = L o r  R. W e h a v e  

( * ) - -  ( . 7 +  
( ( - D [ A . X ] a ~ f A a h ] O ' ) [ A . x ] . [ . / ' A o h  ] 

' a ' 

{ . 1 +  
S ~'~ ( [ A v ] )  ( ' ) -  aJta.,, j ,/~ ~,,~ [ A.q, br ,,h ] - OgtAx]. [ .f2 ~hl .t 

2a ~ : A ~< " 

+ 
~ ( a ~ o ,  o~.~ +, I Wyl: O~o ~< y~<~ox II IWol = h )  (2.8) 
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in R _ x • + x D( - oo, oo) as A --* oo. The positive constant tr is given by 

a 2_E=~zzzexp{ -gz2} 
Y... ~ z exp{ - gz 2} 

(2.9) 

(For  the notion of  convergence in distribution in the function space 
involved we refer the reader to the standard literature/3's)) 

The content of the theorem is pictorially represented on Fig. 1. It is 
instructive to compare this behavior with that of  a simple symmetric ran- 
dom walk on ~. The analogous result for the simple symmetric random 
walk is formulated in the Ray-Knigh t  theory of local times (see, e.g., 
ref. 11). According to these classical theorems, in the ordinary random walk 
case the proper scaling is 

(,) 
St,4x],tA,,]([ AY]) 

2A 

and the limiting process is graphically represented in Fig. 2. In conclusion 
both the scaling and the limiting process are different in our self-repelling 
case. 

An immediate corollary of  the previous theorem is the following limit 
law for the hitting times defined in (2.3), (2.4): 

Corollary 1. F o r x e [ 0 ,  oo) ,h>~0,  a n d , = L o r  R, w e h a v e  

T (.) 
t,,., ] , t , / ~  ~J,] =~ ( T,. I[ I Wo[ = h) (2.10) 

2~A 3/2 

a s A - - s .  

0 
IWl " i  x ]  IWl 

I'A 

Fig. 1. The local time process S(.) of the TSAW with I," = I. 
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f 
Fig. 2. 

: BEsQO O= 8ESe ~ [~x] BESQ0 - - - . -  

]'he local time process S(. ) of the simple symmetric random wa|k. (BESQ~= squared 
Bessei process of dimension 6). 

2.2. A By-Product: A New Identity Concerning Brownian 
Excursions and Bessel Bridges 

Our second result can be formulated in terms of Brownian motion, 
without any reference to the true self-avoiding walk: it is an apparently 
new identity concerning Brownian excursions and Bessel bridges. 

For any initial condition I Wol =h,  the Tx defined in (2.2) clearly has 
an absolutely continuous distribution. Let 

P(T~ e (t, t+dt)[] IWol =h )  
Q(t, x, h) - (2.11) 

dt 

be the density of the distribution of 7",.. From scaling the Brownian motion 
we easily get 

bQ( bt, b2/3x, b '/3h ) = Q( t, x, h) (2.12) 

for any b > 0 .  Define R+ x R ~ ( t , x ) ~ - ~ ( t , x ) e R +  as follows: 

) q~(t, x ) =  O , Ix l ,  h dh (2.13) 

(We shall see soon that the integral on the right-hand side is finite.) The 
scaling property (2.12) of Q implies 

bZ/3q~(bt, b2/3x) = ~o( t, x)  (2.14) 

We denote by ~.and ~b the Laplace transform of Q, respectively q~: 

f; O ( s , x , h ) = s  e -~ 'O( t , x , h )d t  

= sE(e -.~r, III W01 = h) (2.15) 
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~b(s, x) = s :~Jo e-"'q~(t, x) dt 

f: = ~(2s,  Ixl, h) dh (2.16) 

These functions scale as follows: 

b~(b-Is, b2/3x, bJ/3h) = O(s, x, h) (2.17) 

bZ/30(b-ls, b2/3x)= O(s, x) (2.18) 

T h e o r e m  2. Given t e ( 0 ,  oo) [respectively s t ( 0 ,  oo)] fixed, 
x~--,cp(t, x) [respectively x~--~b(s, x) ]  is a probabil i ty density. That  is, for 
any t e (0, oo) [respectively s ~ (0, or ) ]  

~o(t, x) dx -- 1 = ~(s, x) dx (2.19) 

The two assertions of (2.19) are, of  course, equivalent. ~(s , - )  is the dis- 
tribution ~o(t,.) observed at a ' r andom time' of  exponential  distribution 
with mean value s - l .  F rom the scaling relations (2.14) and (2.18) one can 
easily see that the integrals in (2.19) do not depend on t, respectively s, and 
it is enough to prove (2.19) for any part icular  value, say s = 1. 

2.3. L imi t  T h e o r e m  for  the  Posi t ion Process 

The third result concerns the limiting distribution of the TSAW X,, for 
late times. We denote by P(n,k),  n~ ~, k eZ ,  the distribution of our 
TSAW at time n: 

P(n, k) = P(X,  = k) (2.20) 

and by R(s, k), s ~ ~ + ,  k ~ Z, the distribution of the TSAW observed at a 
r andom time 0s, of  geometric distribution 

P(0s = n) = ( 1 - e-'~) e-S~ (2.21) 

R ( s , k ) = ( 1 - e  -s) ~. e .... P(n ,k)  (2.22) 
n = O  

We define the following rescaled 'densities' of the above distributions 

qL~(t, x) = A2/3p([ At], [ A2/3x]) (2.23) 

~bA(s, x) = A2/3R(A-'s,  [ A2/3x]) (2.24) 
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t, s e  R+,  x e  R. It is straightforward that ~bA is exactly the Laplace trans- 
form of ~PA. The main result of ref. 12 was the following. 

Theorem 3. For a n y s e R +  and almost a l l x e R  

~b A (s, x) ~ tr2/3~(s, tr2/3x) (2.25) 

as A ~  oo. 

This is of course a local limit theorem for the TSAW observed at an 
independent random time 0s/A of geometric distribution with mean 
( 1 -  e-S/A)-L In particular, the (integral) limit law 

a2/3X 

P(A -z/3XoslA < x) --* I ~(s, y) dy (2.26) 
- - o c ,  

follows. This is a little bit short of stating the limit theorem for deter- 
ministic time 

t~2D x 

P(A-2nXtA,] < x )  --* .I ~p(t, y) dy (2.27) 
- - - - o c ,  

But, of course, we can conclude that if XtA,] obeys any limit law as A ~ ~ ,  
then (2.27) also holds. 

3. K e ( 0 ,  1) :  PARTIAL  RESULTS A N D  A C O N J E C T U R E  

Given the results presented above, it is natural to try to generalize the 
problem in order to get a wider range of anomalous diffusion limits, inter- 
polating between the simple symmetric random walk and the TSAW 
treated in the previous section. The results and conjectures to be presented 
below refer to the random walk starting from the origin and governed by 
the law (1.2), with x e (0, 1 ) fixed. True self-avoiding walks with x e ( 1, oo ), 
respectively with power law, rather than exponential repulsion will be 
studied in a forthcoming paper. (~3) (See also the remark after Theorem 4.) 

Similarly to (2.2), we define for any ct > 0 

+ 

T!? = I~" I W~l ~ dy (3.1) 
g 

We shall be particularly interested in ct = 2/(x + 1 ) e [ 1, 2), but the defini- 
tion (3.1), and Section 3.2 below make perfect sense for any positive ~. 
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3.1. The Local Time Process and Hitt ing Times: A Parallel to 
Theorem 1 

The definitions of the stopping times T tL'RI the local time process k,m 
s(L.R)[.~ and r"(L'R)--+ k .... , ,, w,.,, are the same as in (2.3)-(2.7). 

The local time process of  the random walk considered stopped at the 
hitting time ,r(L.R) obeys the following limit law: ak,m 

T h e o r e m  4 .  L e t h - e ( O ,  1 ) . F o r x e [ O ,  o o ) , h > ~ O a n d , = L o r R .  
(*)--  ( * )+  

(CO[Ax], Al/'~+l'ah] ('O[A.x-], [Al/(x+l'crh] 
' h ' 

S(*)  r  ( . )+ [A.~].[A'/'"+"a/,]([Ay]).20.A ' / (~ + 1) CO[A"]'[A'/("+')~'h]A <~ y <~09[A"]'A'/C"+"ah])-- 

=>(co o ,  co+ IW,.lZ/'~-+t)'COo <~y<~o~+lllWol h ( '+ lvz )  (3.2) 

in R_ x R + x D( - ~ ,  oo) as A --* oo. The positive constant a is given by 

0" 2 ( h ' q -  1) 2 
2,.+2h-g (3.3) 

Remarks .  One should be careful with the x --+ 0 and x ---, 1 limits. The 
x--* 0 limit formally leads us back to the simple symmetric random walk, 
but the variance a 2 in (3.3) explodes. The correct limit to take is K--, 0, 
g---, o0, Kg ~ a ~ (0, oo); this leads to power  law rather than subexponential 
bond repulsion: indeed in this limit 

n--a 
exp{ - g ( n  ~ - rn")} --, n 5 0  :~m (3.4) 

True self-avoiding walks with power law repulsion will be studied in a 
forthcoming paper. (13) The x---, 1 limit formally leads us back to the setup 
of  Section2,  but the limiting variance, 0.2--.(2g)-1,  differs from the 
variance found in Theorem 1, (2.9). The discrepancy is caused by inter- 
changing two limiting procedures. For  more details on this see the outline 
of  the proof  in the next section, especially the remark after (4.13). 

Theorem 4 has an immediate corollary, too:  

Corollary 2 .  Given the setup of Theorem 4, the asymptotics of  the 
hitting times defined in (2.3), (2.4) is 

T c*) 
taxi. tA'/,.+',~j,j ~ ( T!:/(,.. + l))II I Wol - h (~+ ,)/2) (3.5) 

2aA~. + 2v(~. + I ) 

as A ---, oo, with a given by (3.3). 
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3.2. Generalization of Theorem 2: A Conjecture 

Given Theorem 4 and the techniques of  p roof  of  Theorem 3 (see also 
Section 4.3 below), it is easy to guess  the limiting distribution of the 
properly scaled A-(~+~v~K+2~XtA,1. Let Q(~ be the distribution density of 
T I~ defined in (3.1): 

P (T!7 '  �9 (t, t + d t ) l l l W o l ~ = h )  
Q(~)(t, x, h) - (3.6) 

dt 

and similarly to (2.13) we define 

~0'=)(t, x)= I: ~'=' (2, Ixl, h)dh (3.7) 

~(~) and ~(~) are defined by the Laplace t ransforms (2.15) and (2.16). These 
definitions are of  course completely independent of  the TSAW problem and 
make perfect sense for any ~ �9 (0, c~). The scaling laws of these functions 
a r e  

bQI~)(bt, bZ/la+Z)x, b~/~+2lh) = QI')(t, x, h) 

b 2/(~ + 2)q~(~)( bt, b 2/(~ + 2)x ) = q~l~)( t, x )  

b ~ ) (  b - Is, b 2/1~ + 2~x, b ~/c" + 2)h) = ~ l ( s ,  x, h) 

b 2/~ + 2)~b~')( b - Is, b 2/~ + 2 ) x )  = ( /~ (a ) ( s  ' X) 

(3.8) 

(3.9) 

(3.10) 

(3 . l l )  

Conjecture. Let c t �9  oo). Given t � 9  oo) [respectively s � 9  ~ ) ]  
fixed, x ~ r x) [respectively x~--* ~(')(s,  x ) ]  is a probabil i ty density. 
That  is, for any t � 9  co) [respectively s � 9  ~ ) ]  

~oc ioc 
rp(~)(t, x )  dx  = 1 = ~b~)(s, x)  dx  (3.12) 

The integrals are not greater than 1; this follows from (4.34); see also 
the Remark  after Theorem 5. 

The  mot ivat ion of the conjecture is of  course the fact that, for 
= 2/(x + 1) �9 (1, 2), ~bt'~(t, x) turns out to be the asymptot ic  distribution 

density of  A-(K+ 1)/(~-+2)XtAq as A ~ oo. For  0t = 1, Theorem 2 establishes 
the conjecture. As we shall see in the next section, the integral on the right- 
hand side of  (3.12) can be expressed in terms of expectations of  certain 
functionals of  the three-dimensional  Bessel bridge. The expressions found 
make sense in the limits ct---, 0 and ~ ~ ~ ,  too. And in these limits we can 
prove the assertion. Fur ther  on, for the value ct = 2 we get rather explicit 
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expressions in terms of some hypergeometr ic  integrals. We were not able to 
prove the equality in this case, but numerical integration gives a surprisingly 
accurate good result. 

3.3. Limit Theorem for the Position Process 

The distributions of  X, and Xo, are again denoted by P(n, k), respec- 
tively R(s, k) [see (2.20)-(2.22)].  The properly rescaled 'densities' of  the 
above distributions are now 

~o A (t, x) = A c" + 1 )/(,,- + 2 ) p (  [At], [A I~+ lvc~ + Z~x] ) (3.13) 

~,4(s, x)=A~+I)/t^+z)R(A -Is, [At~+l)/(^-+2)x]) (3.14) 

t, s ~ R+ ,  x ~ R. The limit theorem for the position process is formulated 
conditionally, relying on the validity of  the Conjecture:  

Theorem 5. Assume that  the Conjecture formulated in the pre- 
vious subsection holds. For  any s E R+ and almost  all x e R 

( P A ( S , X ) " + O ' ( ~ ' + I } / ( ~ ' + 2 ) ( p ( 2 / ( K + I } } ( S ,  t T [ I " + I u  (3.15) 

as A --, ~ ,  with a given in (3.3). 

Remark. Without  assuming the validity of  the conjecture, we get the 
inequality (4.34). That  inequality further implies that  the integrals in (3.12) 
are not greater than 1. 

The integral version of this local limit theorem reads: 

GIK+ II/(x + 21A- 

P(A - ~ +  '1/1~+ 2IX < x ) ~  I (o(s,y) dy (3.16) OslA _ ,~_ 

And again we may conclude that  if XEA,] obeys any limit law as A --+ ~ ,  
then 

~IK + ] )IlK + 2) ~. 

P(A-C'+I~/t'+z~XEA,]<x)--+ ;_~. " q~(t, y) dy (3.17) 

4. F U N D A M E N T A L  IDEAS OF PROOFS 

We sketch the proofs of  the assertions made  in the previous section. 
The numbers  of  the subsections correspond to those of Section 3. 

4.1.  For  sake of simplicity we outline the main ideas of  the proof  of  
Theorem 4 for the case h = 0 and �9 = L, i.e., we stop the r andom walk at 
the first arrival at a distant site k~Z.  In the end we shall take k =  lAx] 
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with x > 0  and A---, ~ .  With a little abuse of notation we denote by 
"vlL) the first hitting time of the site k e Z c~ (0, oo). Define Tk --k.0 

--l[_X o ) - ~  if O<~l<k 
Lk(l)= [~v(k-l[X~k)- if k<<,l (4.1) 

In plain words: Lk(I ) is the number of left steps ( k - l ) ~  ( k - l - 1 )  per- 
formed by the random walk _X r*, stopped at the first hitting of the site k, 
and it is essentially half of the local time spent on the edge ( k -  l -  1, k - / ) .  

The clue of the proof is the observation that, with k fixed, the local 
time process Lk(.)  defined in (4.1) is a Markov chain on the state space 
Y+ =Zc~ [0, oo). Apparently this trick has its origin in Knight's paper 16) 
and it is the cornerstone of Ray-Knight theory of the local time of simple 
symmetric random walk and Brownian motion. The same sort of trick was 
applied to the study of random walks in random environments in ref. 5. 
However, as opposed to the previous applications of this trick, the Markov 
process arising in our case will be more complicated than a branching 
process 161 or a branching process with random offspring distribution, t5~ 

A finite walk which hits k for the first time at time i 

O = X o ,  X I . . . . .  X i _ l , X i = k ,  min{ j :x j=k}  =i  (4.2) 

determines uniquely a finite sequence 

A ( 0 ) = 0  

2(1)=J'(2o(l). ..... 2A.-1)(l)) if l<~l<~k 
(4.3) 

- / .(21 (1) ..... 2 A . -  1)(1))  if l > k  
A(I - -  1 ) 

A(/)= ~ ,~p(/) 
p=0( I )  

where 2p(l) is the number of steps ( k -  1)-~ ( k -  1 -  1) between the pth and 
(p + l ) t h  steps ( k - l +  1 ) ~  ( k - l )  performed by the walk. We shall refer 
to the sequence (4.3) as the system of left steps of the walk (4.2). Finiteness 
of the system of left steps means that there exists an /max > k such that 
A(/max) =0.  This correspondence between finite walks hitting k and finite 
systems of left steps is one-to-one: given the sequence (4.3), one can 
reconstruct the complete walk (4.2) univocally. 

Let (4.2) be a finite walk hitting k and (4.3) the corresponding system 
of left steps. Since Tk is a stopping time, the probability that the TSAW 
coincides with (4.2) till Tk is 

i 

P(X~ " = x~) = I-[ wj(_x{) (4.4) 
j = l  
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where, according to (1.2), the weight of the j th  step is 

exp{ -gv'([(Xj_l +xj+ 1)/2] Ix~- ')} 
wj(x~) exp{ -gv~(x j_ ,  + 11_x~-')} +exp{ -gv~(xj_~lX_Jo-~) } 

(4.5) 

Now, rearranging the product in (4.4), we get 

"~<': - . _  = k - I  1>!0 O~< g t x ;  I 

(4.6) 

This last expression can be written in terms of the 'system of left steps' 
(4.3). A careful transcription yields 

k_, ] 

(4.7) 

From (4.7) one can see that the process Lk(. ) is indeed a Markov chain on 
the state space Z+,  homogeneous in the intervals 0 ~< l < k, 1 = k, and 1 > k. 

Remark. In case of the TSAW with site repulsion this rearrangement 
of the product, i.e., the transcription of (4.4) to (4.7), cannot be performed. 
This is the step where the proof of similar results for the site repulsive 
TSAW fails. 

The explicit expressions of ~'• are rather complicated and not par- 
ticularly instructive. More transparent is the following generalized P61ya 
urn description: Let 0 < l < k  be fixed. [For  l>/k the forthcoming argu- 
ment also applies with one minor change; see the comment after (4.8).] 
Consider the succession of those steps of the walk _Xo rk which start from 
the lattice site k - I .  These determine a sequence s,., i =  1, 2 ..... of +__ l's 
according to the direction of the ith step starting from that site. This 
sequence follows a generalized P61ya urn scheme: 

P(s~+l= T-1l[#{l <~j<<,i:sj=-l}=p ^ # { l  <~j<~i:si= +l}=r)  

=~+~l  - i tanh{ 2 ~- lg((p + !)~2 - r~)} (4.8) 

and the urn schemes based at different lattice sites are independent. [For  
I>k instead of ( p + l / 2 )  ~ (respectively r ~) we get p~ (respectively 
( r +  I/2V) in the previous formula, but this does not influence the 
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forthcoming argument .]  Let us consider an urn scheme defined by (4.8) 
and define 

r 0 = 0 ,  r,,+l = m i n { j >  r,,: s / =  +1}  (4.9) 

Z, ,=r , ,+ l - (n+ 1) (4.10) 

In plain words" Z,, is the number  of  - l ' s  appearing before the 
(n + 1)th + 1 appears. We claim that 

y,, (h-+ 1 )/2 (h" + 1)/2 = Z ,  - -n  (4.11) 

converges in distribution to a Gaussian random variable of  mean zero and 
variance a 2 given in (3.3) as n--* ~ .  Assume as an Ansatz that Y,,= O(1) 
as n --* ~ .  We denote 

~,,+l =Z,,+I--Z,, (4.12) 

Given (4.8), we see that, for large values of  n, ~,,+ j is a random variable 
of expectation and variance 

2~ '+  E~,,+ i = 1 1tog y,,n~._t)/2+O(n~._]), D2~,=2+O(n(~-l)/2) 
x + l  

(4.13) 

Remark. We can see here and in the forthcoming asymptotic expan- 
sions why the case X = 1 is not recovered when taking K ~ 1 after proving 
the limit theorem: if K = 1, then error terms in (4.13) become of  the same 
order as the relevant ones. 

In order to prove our  assertion, we write the increments of  the 
process Y,, : 

y,,+~ y,,_tT(~-+l)/2 7(~-+~)/2~ ((n+ 1)(~+l)/2--n I~'+l)/2) 
- -  - -  ~ t l q -  I - - ~ t ;  l - -  

ffn + 1 
= ( n ~ ' + ] v z  + Y,,) 1 + (nc,.+lv2 + - 1 

- - n ( h +  l)/2 ( ( 1  + ~)lh'+ '1/2 -- 1)  (4.14) 

If X~(0,  1), careful analysis of  this last identity yields, to leading orders, 
the following expressions of  the conditional expectation and conditional 
variance of  Y, ,+~-  Y,,: 

E( Y,,+ l - Y, II Y,,) = --2"-KgY,, n~- I + O(n-1) (4.15) 

( x + l  2 
) n~-I+O(n -I) (4.16) Dz(Y,,+ l - Y,,ll Y,)= 2 

822/77/I-2-3 
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Since n ~ - I ~  0, these last relations asymptotically become the stochastic 
differential equation of the Ornstein-Uhlenbeck process, 

dY, = -2Kxg Y, dt + (x +1 ) dw,, (4.17) 
,/2 

l , l~c- I and since Z , ~ I  = oo, the distribution of Y,, will converge to the 
stationary distribution of Y, defined by (4.17), which is the Gaussian of 
zero expectation and variance a 2 given in (3.3). Actually we can control 
the rate of this convergence: the variational distance of the distribution 
of Y,, from that of the Gaussian of variance a 2 is dominated by 
C, e x p ( - C 2 # ~ - ' ~ ) .  This follows from the fact that (a) the Ornstein- 
Uhlenbeck process (4.17) converges to its equilibrium distribution 
exponentially fast in t and (b) Z'~ rn~- ' ~ ( I /x)  n~- 

The argument outlined above suggests that it is more natural 
to consider the Markov chain r t~+~/2(.)  (on the state space ~ k  

{nt~+'~/2lneZ+} c R+) than Lk(-). We define 

~k(l)=L~+l)/2(l) r(~+'l/2(l 1), l~>l (4.18) 

The above argument tells us that the conditional distribution of the step 
~k(l), given that the previous position was large, I t s +  '~/2(1_ 1 ) >> 1, is close ~ k  

[closer than C, exp( -C2  xt2K-~/t~-+~) in variation distance] to a fixed 
Gaussian distribution ~b. Taking k =  [Ax] ,  A---, 00, we can couple the 
Markov chain ttK + ,~/2t ~rA.q ~.) with a reflected random walk on R+ with 
homogeneous step distribution ~ in such a way that their sup-distance is 
o(A'/2) with probability converging to 1. This coupling argument is identi- 
cal to the one in the proof of Theorem 1 in ref. 12. We do not repeat the 
lengthy technical parts here. Eventually we get 

L~- + 1 [A.q }/2 ([ AY ] ) 
=" I W,.I (4.19) ` / - J a  

which is equivalent to (3.2), with h =0.  

4.2. Using It6's and Bismut's characterizations of Brownian 
excursion measure (see refs. 4 and 11), we can express the integral on the 
right-hand side of (3.12) (with the choice s = 1) in terms of expectations of 
certain functionals of the three-dimensional Bessel bridge. Let B,, 0 ~< t ~< 1, 
be a standard three-dimensional Bessel bridge over the time interval [0, 1 ], 
and for 0 ~< fl < oo denote 

rp = I' BP, dt (4.20) 
J o  
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Repeating the first steps of the proof  of Theorem 2 in ref. 12, we can rewrite 
our Conjecture as 

1 
. , / ' ~  ~ ~ 2 E ( r . _ , r ~ - ' )  + ~+22F(~/(~176 1)/(~ + 2 ) )  

E(r~-1/(~+2)) E(r  z -~(~+2)} ?= 1 
x E(r l f~  + 2)) ~- i  (4.21) 

By use of a theorem of Biane and Yor (see ref. 2 and Theorem XI.3.5 in 
ref. 11) E(I"~ -1/(~+2)) and l/(a+2) E( G ) can be expressed explicitly for any ~, 
and consequently we can reduce our conjecture to 

1 ~ ( 2 (2a + 2)/(~ + 2) 
x / ' ~  ~ ~ 2 lE('t '~- 1 l"~- I) + (0~ + 2) 2~/(a + 2) 

F(~/(~ + 2)) F(3/(~ + 2)) F2(2/(a + 2)) E(r~_~ r~/(~+ 2)) 1 ~ 1 
x F((~+l)/(ot+2))F(4/(o~+2)) (4.22) 

For  ct = 1 the equality was established in ref. 12. It is interesting to note 
that although the expressions were a priori defined for 0 < ct < ~ ,  they still 
make sense in the limits ct--, 0 and ~--, oo. W e  have 

E ( r _ l )  
lim(1.h.s, of (4.22)) = (27r)~/2 (4.23) 
~ 0  

lim(l.h.s, o f ( 4 . 2 2 ) ) -  1 ( ( l ) + ~ E ( m ) )  
= - - ~  ( 2 1 t )  i/2 E (4.24) 

where 
m =  sup B, (4.25) 

0~<t~<l 

The expectations appearing in (4.23) and (4.24) are known :~2,1~) 

E ( r _ l )  = (2n) 1/2, E(m) = k 2 ]  ' E = 3 (4.26) 

Plugging these expressions into (4.23) and (4.24), we find that the Conjec- 
ture holds at least in these limiting cases. Another interesting case is et = 2: 
using Theorem XI.3.2 and its Corollary XI.3.3 ref. 11, we can get a more 
explicit formula : 

�9 f?f?(sinhssinht),/2 
(1.h.s. of (4 .22))1~=2= s inh2(s+ t )  dsdt 

l f o  ~o' (Sinh s sinh t)'/2 
+ s inh2(s+ t )  (s+t) dsdt (4.27) 
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We have not been able to evaluate analytically these expressions, but 
numerical integration using the Mathematica software package yields very 
accurate agreement with our conjecture. 

4.3. To prove Theorem 5 we note first that 

P(n, k) = P(X, = k) ~ CL~ _ = n) + p(Tk.  m CRI ] (4.28) [P(T~. , , - -  = n )  
m = 0 

On the other hand, from the definition (3.14) of ~bA, 

1 - -  e -  s/A 
~oA(s, x ) = -  sA -1/~-+2~ ~ e .... /AP(n, [A I'-+ ll/ ' '+2>x]) (4.29) 

s/A , ,  = o 

Combining (4.28) and (4.29), we are led to 

1 - e - S / A  
~A (s, x) = 

s/A 

x sA -'/'~+2' ~ [E(exp( - s T ~ , . +  w,~+..,xl..,/A)) 
m = O  

{R) + E(exp( -sTtA,,+,,/,~+2,xl..,/A))] (4.30) 

Defining 
(L R} o~L'm(S, X, h)=sE(exp{ --sT [A~.+,,/~+..,x].t A,/,,+2,ohl/(ZaA )} ) (4.31) 

we find that (4.30) reads 

OA(S,X ) 1 --e -'/A 11i ~ (~k~(2as, x,h)+~R~(2as,  x , h ) )d  h (4.32) 
s-/-d 2 

From Corollary 2 it follows that for any s > 0, x E [0, c~ ), and h > 0 

;~(s, x, h) (4.33) Q(AL'R)(s, X, h )  ~ ~(2/(g +1  

as A --* ~ .  Conditions (4.32) and (4.33) imply 

lim inf ~A(s, x) >~ ~12/~" + 1 ~(2~s, Ix[,h)dh 
A ~  

=U~"-+I~/~'+2)~2/~+I~(S, UC'+IVr (4.34) 

On the other hand, assuming the validity of the Conjecture, we have 

~' ~c2/~" +11~(s, x) dx (4.35) ~ A(s, x)  dx = 1 = 
- -  OCl l O C  

The statement of Theorem 5 follows from (4.34) and (4.35). 
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N a t i o n a l  F o u n d a t i o n  for Scientif ic  Research ,  g ran t  7275, and  E C C  gran t  
C E E  C I P A - C T 9 2 - 4 0 1 6 .  

N O T E  A D D E D  IN  P R O O F  

The  Con jec tu r e  fo rmula ted  in subsec t ion  3.2. has been proved .  Its 
p r o o f  will a p p e a r  in ref. 13. 
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